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We consider approximate maximum likelihood parameter esti-

mation in nonlinear state-space models. We discuss both direct opti-

mization of the likelihood and expectation-maximization (EM). For

EM, we also give closed-form expressions for the maximization step

in a class of models that are linear in parameters and have additive

noise. To obtain approximations to the filtering and smoothing dis-

tributions needed in the likelihood-maximization methods, we focus

on using Gaussian filtering and smoothing algorithms that employ

sigma-points to approximate the required integrals. We discuss dif-

ferent sigma-point schemes based on the third, fifth, seventh, and

ninth order unscented transforms and the Gauss-Hermite quadra-

ture rule. We compare the performance of the methods in two sim-

ulated experiments: a univariate nonlinear growth model as well as

tracking of a maneuvering target. In the experiments, we also com-

pare against approximate likelihood estimates obtained by particle

filtering and extended Kalman filtering based methods. The exper-

iments suggest that the higher-order unscented transforms may in

some cases provide more accurate estimates.
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I. INTRODUCTION

This paper is an extended version of our article

[24] where we considered parameter estimation in state-

space models using expectation-maximization (EM) al-

gorithms based on sigma-point and particle smoothers.

In this paper, we extend our interest from EM algo-

rithms to so called direct maximum likelihood based

parameter estimation methods, where instead of using

the EM algorithm, the marginal likelihood of the param-

eters is directly approximated using nonlinear filtering

methods. In particular, we focus our interest to sigma-

point filters which use high-order unscented Kalman fil-

ters and Gauss-Hermite Kalman filters to approximate

the likelihood surface.

We consider state-space models of the following

form:

xk = f(xk¡1,μ) +qk¡1,

yk = h(xk,μ) + rk, (1)

where xk 2Rn is the discrete-time state sequence with
an initial distribution x0 » N(x0 jm0(μ),P0(μ)), yk 2Rd
is the measurement sequence, qk » N(0,Q(μ)) is the
Gaussian process noise sequence, rk » N(0,R(μ)) is the
Gaussian measurement error sequence, and μ 2 Rm is
a static parameter vector. Typically, one is interested in

computing the posterior distribution of the state xk given

measurements up to time k, p(xk j y1, : : : ,yk), known as
the filtering problem, or computing the posterior dis-

tribution of the state xk given all measurements, p(xk j
y1, : : : ,yT), where k · T, known as the smoothing prob-
lem. In the general case, analytical expressions do not

exist and we have to resort to approximative algorithms

such as the sigma-point methods. See, for example, [32]

for a general overview of Bayesian filtering and smooth-

ing.

While many filtering and smoothing algorithms are

formulated assuming fixed static parameters μ, in prac-
tice optimal values for these parameters are generally

unknown. Therefore, methods for estimating the param-

eters from the data are desired. In this paper, we concen-

trate on maximum-likelihood methods, where the pa-

rameters are selected by maximizing the marginal like-

lihood, or equivalently the logarithm of the marginal

likelihood, that is

μML = argmax
μ
logp(y1:T j μ): (2)

In linear systems with additive Gaussian noise, the like-

lihood can be evaluated using the Kalman filter [17, 21].

Many optimization algorithms utilize also the gradient

of the log-likelihood. The gradient can be evaluated

by so-called sensitivity equations, a recursion that is

obtained by differentiating the Kalman filter recursion

[15]. Alternatively, due to Fisher’s identity, the gradi-

ent may be evaluated by differentiating an auxiliary

function that can be computed during the smoothing
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pass [28, 35]. Instead of directly optimizing the like-

lihood, the expectation-maximization (EM) algorithm

[9] can be used to optimize parameters. The EM al-

gorithm consists of iterating the expectation (E) step

where a bound of the log-likelihood is computed using

the current parameter estimates, and the maximization

(M) step where the bound is maximized with respect

to the parameters. The evaluation of the bound in the

E-step is obtained by solving the smoothing problem.

See [36] for a discussion of applying the EM algorithm

in state-space models. Note that in the linear-Gaussian

case both gradient evaluation methods as well as the

EM algorithm in principle converge to the same solu-

tion, namely, the parameter value that maximizes the

log-likelihood.

In this paper, our interest lies in estimating the

static parameters by maximum-likelihood estimation in

the case of nonlinear state-space models with addi-

tive Gaussian noise, that is model (1). Formally, the

marginal likelihood can be computed by marginaliz-

ing out the states from the joint distribution of the

measurements and states using nonlinear filtering equa-

tions and the prediction error decomposition (see, e.g.,

[5, 32]), leading to similar methods as in the linear-

Gaussian case. However, since the state variables x can-
not in general be marginalized out analytically, one

needs to employ approximative methods. In the so

called direct likelihood methods, the likelihood is ap-

proximated directly using approximative nonlinear fil-

tering methods (see, e.g., [5, 22, 29, 32, 37]) and its

maximum is found via nonlinear optimization. Simi-

larly, the expectation-maximization (EM) algorithm can

be employed, but the E-step cannot be solved ex-

actly. Instead, the E-step is approximated with non-

linear smoothing algorithms (see, e.g., [12, 24, 31,

34, 41]).

The aim of this paper is to extend the results of

our paper [24] by showing how high-order (i.e., third,

fifth, seventh, and ninth order) unscented transforms

and Gauss-Hermite integration based sigma-point meth-

ods can be used for approximate direct likelihood and

EM-based parameter estimation in nonlinear state-space

models. For EM, we also give closed-form expressions

for the maximization step in a class of models that are

linear in parameters and have additive noise. We com-

pare the unscented transform and Gauss-Hermite based

sigma-point methods to linearization-based extended

Kalman filter algorithms and Monte Carlo based particle

filtering algorithms. We also provide an algorithm for

computing the gradients required by the gradient-based

optimization methods. Although we focus on maximum

likelihood estimation, the provided algorithms can be

easily extended to computation of maximum a poste-

riori estimates by including a prior distribution to the

objective function.

The remainder of the paper is organized as follows.

In Section II, we present the sigma-point filters and

smoothers based on assumed Gaussian density filtering

and smoothing. In Section III, we discuss parameter

estimation based on direct likelihood maximization and

EM. Numerical experiments are presented in Section IV.

Finally, Section V presents concluding discussion.

II. SIGMA-POINT FILTERING AND SMOOTHING

Under our interpretation, sigma-point filtering and

smoothing is derived by assuming Gaussian approxima-

tions for the state distributions, which enables the use

of a Kalman filter like filtering recursion and a Rauch-

Tung-Striebel backward pass for the smoothing distri-

butions. The Gaussian filtering and smoothing equa-

tions contain expectations over Gaussian distributions

which cannot be generally evaluated in closed form. The

sigma-points arise from approximating these Gaussian

integrals by weighted sums determined by some cuba-

ture (multi-dimensional quadrature) formula. Hence, we

interpret the different sigma-point methods as incarna-

tions of different integral approximations.

In the following, we first present the assumed Gaus-

sian density filtering and smoothing framework. Then,

we discuss various different cubature rules for approx-

imating the Gaussian integrals. Finally, we show how

the cubature rules are applied to the assumed Gaussian

density filtering and smoothing framework to obtain

the filtering and smoothing equations explicitly in the

sigma-point form.

A. General Gaussian Filtering and Smoothing

Assumed densityGaussian filtering (see [16, 32, 33])

is based on assuming that the filtering distributions are

approximately Gaussian, that is, assuming means mkjk
and covariances Pkjk such that

p(xk j y1:k)¼ N(xk jmkjk,Pkjk) (3)

as well as meansmkjk+1 and covariances Pkjk+1 such that

p(xk+1 j y1:k)¼ N(xk+1 jmkjk+1,Pkjk+1): (4)

The filtering equations of the resulting Gaussian filter

[16, 43] consist of a prediction step and an update

step. In the prediction step, we compute the state mean

and covariance of the distribution p(xk j y1:k¡1) using
the Gaussian approximation for p(xk¡1 j y1:k¡1). The
resulting equations are

mkjk¡1 = E[f(xk¡1)],

Pkjk¡1 = E[(f(xk¡1)¡mkjk¡1)

£ (f(xk¡1)¡mkjk¡1)
T]+Q, (5)

where the expectations are taken with respect to the

distribution xk¡1 » N(mk¡1jk¡1,Pk¡1jk¡1).
In the corresponding update step, we assume a Gaus-

sian density p(xk j y1:k¡1) =N(xk jmkjk¡1,Pkjk¡1) and
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compute the state mean and covariance for the distri-

bution p(xk j y1:k). The resulting equations are
¹k = E[h(xk)],

Sk = E[(h(xk)¡¹k)(h(xk)¡¹k)T]+R,
Ck = E[(xk ¡mkjk¡1)(h(xk)¡¹k)T],
Kk =CkS

¡1
k ,

mkjk =mkjk¡1 +Kk(yk ¡¹k),
Pkjk = Pkjk¡1¡KkSkKTk , (6)

where ¹k and Sk are the expectation and variance, re-
spectively, of the measurement yk and Ck is the covari-

ance of the state xk and the measurement yk. These

expectations are taken with respect to the distribution

xk » N(mkjk¡1,Pkjk¡1).
The smoothing distributions p(xk j y1:T) are obtained

from a backward pass, that is, starting from k = T and

iterating backwards in time. On each step, the smooth-

ing density of xk+1 is assumed to be Gaussian: p(xk+1 j
y1:T) =N(xk+1 jmk+1jT,Pk+1jT). The mean and covari-
ance for p(xk j y1:T) are then computed from the previ-

ous Gaussian smoothing density and the Gaussian filter-

ing densities using the Rauch-Tung-Striebel backward

pass [13, 30] as follows [33]:

mk+1jk = E[f(xk)],

Pk+1jk = E[(f(xk)¡mk+1jk)

£ (f(xk)¡mk+1jk)
T]+Q,

Dk+1 = E[(xk ¡mkjk)(f(xk)¡mk+1jk)
T],

Gk =Dk+1[Pk+1jk]
¡1,

mkjT =mkjk +Gk(mk+1jT¡mk+1jk),

PkjT = Pkjk +Gk(Pk+1jT¡Pk+1jk)GTk , (7)

where Gk is known as the smoother gain and the ex-

pectations are taken with respect to the distribution

xk » N(mkjk,Pkjk). The pairwise joint smoothing distri-
butions p(xk,xk¡1 j y1:T) are also of interest since they
are used in the expectation-maximization algorithm (see

Section III-B). Gaussian approximations for these dis-

tributions are obtained as a by-product of the smoothing

backward pass results as follows (see, e.g., [32, p. 189]).

p(xk,xk¡1 j y1:T)¼

N
μμ

xk

xk¡1

¶¯̄̄̄μ
mkjT
mk¡1jT

¶
,

μ
PkjT PkjTG

T
k¡1

Gk¡1PkjT Pk¡1jT

¶¶
:

(8)

B. Approximating the Gaussian Integrals

As we saw in the previous section, during the evalu-

ation of the prediction and update steps of the Gaussian

filter and smoother, we need to solve a set of Gaus-

sian integrals on each step. These integrals are of the

following form:

E[g(x)] =
Z
Rn
g(x)N(x jm,P)dx, (9)

where g :Rn!Rd is the integrand and the weighting
function N(x jm,P) is a multi-dimensional Gaussian
density with mean m and covariance matrix P. In this

paper, these integrals are computed by using multi-

dimensional generalizations of Gaussian quadratures–

also referred to as Gaussian cubatures [6]. They give

approximations of the form

E[g(x)]¼
X
i

wig(xi), (10)

where the weights wi and sigma-points xi are functions

of the meanm and covariance P of the Gaussian weight-

ing function. The sigma-points are positioned as fol-

lows:

xi =m+L»i, (11)

where »i are method specific unit sigma-points, and L is
a matrix square-root factor such that P= LLT (e.g., the

Cholesky decomposition of P). The differences in the

methods come from different choices of weights and

unit sigma-points.

In the following we briefly introduce a number of

schemes for choosing the weights and sigma-points.

The difference between these schemes stems from a

trade-off between the number of sigma-points (required

function evaluations) versus precision in the approxi-

mation. The degree of approximation is quantified by

the highest polynomial order, p, for which the method

is exact.

Unscented transform. The unscented transform (UT,

[19, 20]) uses a set of 2n+1 cubature points located

in the center and on the surface of an n-sphere. The

radius and the weights can be controlled using a set of

parameters. The cubature points are given by:

»0 = 0,

»i =

½ p
¸+nei, i= 1, : : : ,n,

¡p¸+ nei¡n, i= n+1, : : : ,2n,

where ei denotes a unit vector to the direction of coor-

dinate axis i, and the weights are defined as follows:

w(0) =

8><>:
¸

n+¸
, for mean terms,

¸

n+¸
+(1¡®2 +¯), for covariance terms,

w(i) =
1

2(n+¸)
, i= 1, : : : ,2n,

where ¸= ®2(n+·)¡n and ®, ¯, and · are parameters
of the method.
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Fig. 1. Unit sigma-points in two dimensions for each of the methods. The absolute value of the weights are indicated by the point size,

positive weights being black, negative weights white. (a) The symmetric cubature rule of order p= 3 with 4 points. (b) The symmetric

cubature rule of order p= 5 with 9 points. (c) The symmetric cubature rule of order p= 7 with 17 points. (d) The symmetric cubature rule

of order p= 9 with 25 points. (e) For comparison, the Gauss-Hermite (order p= 9) sigma-points (81 points, many of which with very small

weights) are also shown.

Symmetric, 3rd order. A widely applicable sigma-point

scheme is constructed by setting the unscented trans-

form parameters to ®=§1, ¯ = 0, and ·= 0 [43]. This
is also known as the 3rd order symmetric spherical-

radial cubature method (CKF, [3]; see [38] for the ex-

plicit connection). This method utilizes a scaled and ro-

tated set of 2n points, which are selected to be at the

intersections of an n-sphere and the coordinate axes:

»i =

½ p
nei, i= 1,2, : : : ,n,

¡pnei¡n, i= n+1, : : : ,2n:

The weights are defined as wi = 1=(2n) for i= 1,2, : : : ,

2n. The number of evaluation points is a linear function

of the state dimension. The corresponding sigma-point

filter is referred to as UKF 3.

Symmetric, 5th order. Building upon the work of Mc-

Namee and Stenger [26], it is possible to find explicit

fully symmetric integration formulas of higher order

than three. These integration schemes are exact for sym-

metric polynomials up to a given order p. For order

p= 5, the number of required sigma-points is 2n2 +1.

The corresponding sigma-point filter is referred to as

UKF 5.

Symmetric, 7th order. For order p= 7, the number of

required sigma-points is 1
3
(4n3 +8n+3), meaning that

they scale cubicly with the number of state dimensions.

The corresponding sigma-point filter is referred to as

UKF 7.

Symmetric, 9th order. For order p= 9, the number of

required sigma-points is 1
3
(2n4¡ 4n3 +22n2¡8n+3).

The corresponding sigma-point filter is referred to as

UKF 9. If required, even higher order methods can be

constructed in the spirit of [26].

Gauss-Hermite. The n-dimensional Gauss-Hermite

quadrature method forms the sigma-points as a Carte-

sian product of the one-dimensional Gauss-Hermite

quadratures, and the weights are simply products of the

one-dimensional weights [6, 16, 43]. The disadvantage

of this method is that with a pth order GH approxima-

tion (exact for polynomials up to order p), the required

number of evaluation points is pn, the number growing

Fig. 2. Scaling of the number of sigma-points for each of the

symmetric methods (solid lines). The required number of

sigma-points for the Gauss-Hermite cubature of corresponding order

p is visualized by the dashed lines.

exponentially with state dimension n. The correspond-

ing filter is referred to as GHKF.

The exact formulas for the higher-order methods be-

come lengthy and have been omitted here for brevity

(see, [25, 26, 43], for implementation details and dis-

cussion). Figure 1 gives a pictorial example of how the

points and weights are placed in two dimensions (n= 2)

for each of the methods. Note that even though the 5th

and 9th order methods do not have negative weights

when n= 2, they have negative weights in other dimen-

sions.

For higher state dimensions, Figure 2 shows how the

number of required points scale in each of the schemes.

The exponentially growing number of evaluation points

for Gauss-Hermite is apparent in Figure 2. In the UKFs,

the number of evaluation points grow polynomially.

McNamee and Stenger provide the following bound for

the number of evaluation points for the fully symmetric

integration formulas of arbitrary degree p= 2k+1 in

n-space: O((2n)k=k!). Note that while in this paper we

focus on the higher-order methods based on McNamee

and Stenger, alternative cubature rules have also been

suggested (see [7, 18]).
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C. Sigma-Point Filtering and Smoothing

The following sigma-point filtering and smoothing

equations are obtained by selecting a cubature rule, for

example, one of the rules discussed in Section II-B

and substituting it in place of the expectations in the

Gaussian filtering and smoothing equations (Sec. II-A,

Eqs. 5—7).

In the following equations, we denote the lower

triangular matrix square-root (Cholesky) factor of a

covariance matrix P by L so that for example Pkjk¡1 =
Lkjk¡1L

T
kjk¡1. The prediction step is

mkjk¡1 =
X
i

wif(mk¡1jk¡1 +Lk¡1jk¡1»i),

Pkjk¡1 =
X
i

fwi(f(mk¡1jk¡1 +Lk¡1jk¡1»i)¡mkjk¡1)

£ (f(mk¡1jk¡1 +Lk¡1jk¡1»i)¡mkjk¡1)
Tg+Q

(12)

and the update step is

¹k =
X
i

wih(mkjk¡1 +Lkjk¡1»i),

Sk =
X
i

fwi(h(mkjk¡1 +Lkjk¡1»i)¡¹k)

£ (h(mkjk¡1 +Lkjk¡1»i)¡¹k)Tg+R,

Ck =
X
i

fwiLkjk¡1»i

£ (h(mkjk¡1 +Lkjk¡1»i)¡¹k)Tg,
Kk =CkS

¡1
k ,

mkjk =mkjk¡1 +Kk(yk ¡¹k),
Pkjk = Pkjk¡1¡KkSkKTk : (13)

The Rauch-Tung-Striebel smoother equations are

mk+1jk =
X
i

fwif(mkjk +Lkjk»i)g,

Pk+1jk =
X
i

fwi(f(mkjk +Lkjk»i)¡mk+1jk)

£ (f(mkjk +Lkjk»i)¡mk+1jk)
Tg+Q,

Dk+1 =
X
i

fwiLkjk»j(f(mkjk +Lkjk»i)¡mk+1jk)g,

Gk =Dk+1[Pk+1jk]
¡1,

mkjT =mkjk +Gk(mk+1jT¡mk+1jk),

PkjT = Pkjk +Gk(Pk+1jT¡Pk+1jk)GTk : (14)

To evaluate expectations with respect to the pair-

wise smoothing distributions (Eq. 8), the required 2n-

dimensional sigma-points need to be generated sepa-

rately as they are not used in the smoother pass. The

sigma-points used for the pairwise smoothing distribu-

tions are of the formÃ
x(i)k

x(i)k¡1

!
=

Ã
m(i)
kjT

m(i)
k¡1jT

!
+

sμ
PkjT PkjTG

T
k¡1

Gk¡1PkjT Pk¡1jT

¶
»(2n)i ,

(15)

where »(2n)i are the 2n-dimensional unit sigma-points.

Then, expectation a function f(xk,xk¡1) is approxi-
mated as

E(f(xk,xk¡1) j y1:T) =
X
i

w(2n)i f(x(i)k ,x
(i)
k¡1), (16)

where w(2n)i are the corresponding weights of the 2n-

dimensional sigma-point scheme.

III. PARAMETER ESTIMATION

In this section, we consider methods for estimating

the static parameters μ of the state-space model (1). All
methods discussed target the maximum likelihood solu-

tion, that is, aim to maximize p(y1:T j μ), or equivalently
the log-likelihood:

μML = argmax
μ
logp(y1:T j μ): (17)

Since the state variables x0:T cannot in general be

marginalized in closed-form, approximative numeric

methods are needed.

Here, we focus on three approaches where sigma-

point filtering and smoothing is used to approximate

the likelihood. First, we consider a so-called direct-

likelihood approach, where the sigma-point algorithm

is used to directly approximate the log-likelihood and

its gradient, which are then used in numeric optimiza-

tion algorithms such as conjugate-gradient optimization.

Second, the expectation-maximization (EM) algorithm

which is based on a lower bound for the log-likelihood

and iterating optimization of parameters with respect to

the lower bound and updating the lower bound with new

parameters. The third approach is a modification of the

direct-likelihood optimization where Fisher’s identity is

used to express the gradient of the log-likelihood using

the same lower bound function that appears in the EM

algorithm. Note that the third approach is otherwise sim-

ilar to the first, but since it is based on the EM lower

bound, we present the methods in this order. Each of

these three approaches may be used in combination with

any of the sigma-point rules discussed in Section II-B.

Note that all the algorithms presented in this section

are easily extended to maximum a posteriori estimation

since maximizing the posterior density is equivalent to

maximizing the (unnormalized) log-posterior. That is,

the sum of log-likelihood and log-prior:

μMAP = argmax
μ
[logp(y1:T j μ)+ logp(μ)]: (18)

Since the log-prior is known, approximations of the

unnormalized log-posterior as well as its gradient and
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lower bounds are immediately obtained from the corre-

sponding approximations for the log-likelihood.

A. Direct Likelihood Based Parameter Estimation

The marginal log-likelihood function can be formu-

lated as the following sum

LT(μ) =
TX
k=1

logp(yk j y1:k¡1,μ): (19)

Furthermore, the terms of the sum on the right hand

side may in principle be evaluated by

p(yk j y1:k¡1,μ) =
Z
p(yk j xk,μ)p(xk j y1:k¡1,μ)dxk,

(20)

that is, integrating the measurement model p(yk j xk,μ)
over the predicted state distribution p(xk j y1:k¡1,μ)
which is computed during the Bayesian filtering recur-

sion. In assumed density Gaussian filtering is used, we

get the approximation

p(yk j y1:k¡1,μ)¼ N(yk j ¹k,Sk), (21)

whence the marginal log-likelihood expression in Equa-

tion (19) evaluates to

LT(μ) = logp(y1:T j μ)¼¡
1

2

TX
k=1

log j2¼Skj

¡ 1
2

TX
k=1

(yk ¡¹k)TS¡1k (yk ¡¹k), (22)

where the quantities ¹k and Sk are evaluated during the
filtering recursion, in the case of sigma-point methods

by Equation (13).

To enable use of gradient-based optimization algo-

rithms, we also need a method for evaluating the gra-

dients of the marginal log-likelihood. This is based on

the so-called sensitivity equations [14, 32] that are ob-

tained by differentiating the filtering equations. Namely,

the gradient of the log-likelihood is obtained by the re-

cursion

@Lk(μ)
@μi

=
@Lk¡1(μ)
@μi

¡ 1
2
tr

μ
S¡1k (μ)

@Sk(μ)

@μi

¶
¡ vTk (μ)S¡1k (μ)

@vk(μ)

@μi

+
1

2
vTk (μ)S

¡1
k (μ)

@Sk(μ)

@μi
S¡1k (μ)vk(μ),

(23)

where vk = yk ¡¹k. The derivatives @Sk(μ)=@μi and
@vk(μ)=@μi are computed along the filtering pass by the
equations shown in Figure 3.

B. Expectation-Maximization Based Parameter
Estimation

Expectation-maximization (EM), proposed by

Dempster et al. [9] is an iterative algorithm for find-

ing maximum likelihood parameter estimates in settings

with some unobserved variables, such as the state vari-

ables x in the state-space context. The motivation is

that the so-called full-data likelihood of the observed

and unobserved variables is easier to compute, and a

lower bound for the marginal likelihood of the observed

variables may be obtained based on expected full-data

log-likelihood. In the following, we present the EM al-

gorithm following the formulation by Neal and Hinton

[27] and the notation of Schön et al. [34].

The EM algorithm is based on the following lower

bound of the log-likelihood:

logp(y1:T j μ)¸
Z
q(x0:T) log

p(x0:T,y1:T j μ)
q(x0:T)

dx0:T,

(24)

where q is an arbitrary probability density over the

states x0:T. The idea is to iteratively maximize this

lower bound with respect to q (holding μ fixed) and

with respect to μ (holding q fixed). Furthermore, when

μ = μ(n) is fixed, the maximum with respect to q is

obtained by

q(x0:T) := p(x0:T j y1:T,μ(n)): (25)

By substituting this into Equation (24), the bound be-

comesZ
p(x0:T j y1:T,μ(n)) log

p(x0:T,y1:T j μ)
p(x0:T j y1:T,μ(n))

dx0:T

=

Z
p(x0:T j y1:T,μ(n)) logp(x0:T,y1:T j μ)dx0:T

¡
Z
p(x0:T j y1:T,μ(n)) logp(x0:T j y1:T,μ(n))dx0:T:

The latter term is independent of μ and may thus be

omitted when maximizing the lower bound with respect

to μ. The first term is the conditional expectation of

logp(y1:T,x0:T j μ) conditional on μ(n) and y1:T. Thus, the
step of maximizing the lower bound (Eq. 24) may be

replaced by computing the following function:

Q(μ,μ(n)) = E[logp(x0:T,y1:T j μ) j y1:T,μ(n)]: (26)

The EM algorithm in its general form thus consists of

initializing the parameters to μ(0) and for n= 0,1, : : :

iterating the following two steps:

² E-step: compute Q(μ,μ(n)).
² M-step: μ(n+1)Ã argmaxμQ(μ,μ(n)).
In state-space models, the Q-function can be decom-

posed by employing the Markov property of the state

sequence and the conditional independence of the mea-

surements:

Q(μ,μ(n)) = I1(μ,μ(n)) + I2(μ,μ(n)) + I3(μ,μ(n)), (27)
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Fig. 3. Recursion for computing the derivatives of the prediction

and update steps. Fx is the Jacobian of f(x,μ) as a function of x and

Hx is the Jacobian of h(x,μ) as a function of x. Algorithms for

computing the derivatives of the Cholesky factors L such that

P= LLT are omitted here (see [32]).

where the terms are

I1(μ,μ
(n)) = E[logp(x0 j μ) j y1:T,μ(n)], (28)

I2(μ,μ
(n)) =

TX
k=1

E[logp(xk j xk¡1,μ) j y1:T,μ(n)], (29)

I3(μ,μ
(n)) =

TX
k=1

E[logp(yk j xk,μ) j y1:T,μ(n)]: (30)

To evaluate this expression, one needs the smoothing

distributions p(xt j y1:T,μ(n)) and the joint smoothing

distributions of consecutive states p(xk,xk+1 j y1:T,μ(n)).
Sigma-point approximations to the EM algorithm are

then obtained by replacing the expectations over the

smoothing distributions by their sigma-point smoother

approximations. The Gaussian smoother approximation

for Q is

Q(μ,μ(n))¼

¡ 1
2
log j2¼P0j ¡

T

2
log j2¼Qj ¡ T

2
log j2¼Rj

¡ 1
2
trfP¡10 [P0jT+(m0jT¡m0)(m0jT¡m0)

T]g

¡ 1
2

TX
k=1

trfQ¡1E[(xk ¡ f(xk¡1))(xk ¡ f(xk¡1))T j y1:T]g

¡ 1
2

TX
k=1

trfR¡1E[(yk ¡h(xk))(yk ¡h(xk))T j y1:T]g,

(31)

where P0,Q,R and the model functions f(¢),h(¢) de-
pend on the parameters μ. The smoothing distribu-

tion means and covariances mkjT,PkjT are obtained dur-
ing the smoothing backward pass. The expectations

over the smoothing distribution in the latter two terms

are evaluated by using the sigma-point approximations

for Gaussian integrals as follows. The second expecta-

tion depends only on the smoothing distribution N(xk j
mkjT,PkjT) and is computed as follows:

E[(yk ¡h(xk)(yk ¡h(xk)T j y1:T]
¼
X
i

wi(yk ¡h(mkjT) +LkjT»i)

£ (yk ¡h(mkjT) +LkjT»i)
T: (32)

The first expectation depends on the pairwise joint

smoothing distribution p(xk,xk¡1 j y1:T) (cf. Sec. II-
A, Eq. 8). Thus, to evaluate it we need to use 2n-

dimensional sigma-points as discussed in Section II-C,

Equation 15.

In general, maximizing Q in the M-step requires

the use numerical optimization, for example, using the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

[11]. However, using numerical optimization inside EM

is quite cumbersome, because with the same effort we
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could numerically optimize the approximate likelihood

directly. Hence the benefit of EM is in the situation

when the optimization can be performed in closed form.

This kind of special case is the class of models where

the parameters appear linearly although the model itself

might be nonlinear.

In the following, we present closed-form solutions

for the special case where the model functions are linear

combinations of the parameters where the parameters

appear as coefficients of the linear combinations and/or

the covariances. That is, we consider models that can

be represented as follows:

xk =Af̃(xk¡1)+qk, (33)

yk =Hh̃(xk)+ rk, (34)

where f̃(¢) and h̃(¢) are functions containing the nonlin-
earities and the parameters are a subset of fA,H,Q,R,
m0,P0g.
For these models, the expression for Q can be writ-

ten as

Q(μ,μ(n)) =

¡ 1
2
log j2¼P0j ¡

T

2
log j2¼Qj ¡ T

2
log j2¼Rj

¡ 1
2
trfP¡10 [P0jT+(m0jT¡m0)(m0jT¡m0)

T]g

¡ T
2
trfQ¡1[§¡CAT¡ACT +A©AT]g

¡ T
2
trfR¡1[D¡BHT¡HBT +H£HT]g,

where the model parameters to be optimized are some

subset of fA,H,Q,Rm0,P0g and §,©,£,B,C,D can

be evaluated based on the latest E-step sigma-point

smoother results as follows:

§ =
1

T

TX
k=1

PkjT+mkjT[mkjT]
T, (35)

©=
1

T

TX
k=1

E[f̃(xk¡1)f̃
T(xk¡1) j y1:T], (36)

£ =
1

T

TX
k=1

E[h̃(xk)h̃
T(xk) j y1:T], (37)

B=
1

T

TX
k=1

ykE[h̃
T(xk) j y1:T], (38)

C=
1

T

TX
k=1

E[xk f̃
T(xk¡1) j y1:T], (39)

D=
1

T

TX
k=1

yky
T
k : (40)

Using these values, the optimal parameters in the M-

step, that is, the maximum points of the Q(¢,μ(n))-
function are

² When μ =A, we get
A¤ =C©¡1:

² When μ =H, we get
H¤ = B£¡1:

² When μ =Q, we get
Q¤ =§¡CAT¡ACT +A©AT:

² When μ =R, we get
R¤ =D¡HBT¡BHT +H£HT:

² When μ =m0, we get

m¤0 =m0jT: (41)

² Finally, the maximum with respect to the initial co-

variance μ = P0 is

P¤0 = P0jT+(m0jT¡m0)(m0jT¡m0)
T:

C. Evaluating the Gradient Based on Fisher’s Identity

The expected log-likelihood that appears in the EM

algorithm may also be used as a basis of an alterna-

tive approach for evaluating the gradient in direct opti-

mization. Based on Fisher’s identity, the gradient of the

marginal log-likelihood may be expressed as

@LT(μ)
@μ

=
@Q(μ,μ(n))

@μ

¯̄̄̄
μ(n)=μ

, (42)

where Q is the function defined in the EM algorithm

(Eq. 27). When the Q-function is approximated with
sigma-point smoothers, we obtain an alternative approx-

imation of the gradient of the marginal log-likelihood

that may be used in place of the approximation derived

in Section III-A. For linear state-space models, this ap-

proach was suggested by Segal and Weinstein [35] and

later by Olsson et al. [28] who called the approach the

‘easy gradient recipe.’ See [5, 32] for discussions of the

nonlinear case.

IV. EXPERIMENTS

In this section, we demonstrate the different sigma-

point schemes and different parameter estimation algo-

rithms with two example models. First, we use a one-

dimensional model (the univariate nonstationary growth

model, UNGM, [1, 23]) to illustrate the approximate

likelihood curves obtained by different methods. Sec-

ond, we compare the performance of different algo-

rithms with simulated data in a problem of tracking a

maneuvering target with bearings-only measurements.

In this example, we focus on estimating the sensor vari-

ances and compare the variance estimates as well as the

actual tracking error.
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Fig. 4. Visualization of the one-step evolution of the EM algorithm

for the univariate estimation of parameter a. The dotted line

represents the particle filter log-likelihood estimate (extrapolated in

the tails), while the solid line is the sigma-point filter log-likelihood

approximation. The dashed lines correspond to the sigma-point EM

bounds for iterations n and n+1.

Codes for replicating the experiments are available

on the author homepages.

A. Simple Nonlinear Growth Model

We simulated a realization with T = 100 data from

the following model:

xk+1 = axk + b
xk

1+ x2k
+ ccos(1:2k) + qk, (43)

yk = dxk + rk: (44)

with a= 0:5, b = 25, c= 8, d =
p
0:05, qk » N(0,10),

rk » N(0,0:01), x0 » N(0,0:01). This is the univariate
nonstationary growth model [1, 23] except that we

changed the measurement model to linear as the model

with the typically used quadratic measurement model

is known to be challenging for sigma-point algorithms

[42].

First, we estimated the likelihood of parameter a,

holding other parameters fixed at their ground-truth val-

ues. Likelihood curves obtained by direct likelihood es-

timation with various sigma-point rules as well as the

EM lower bounds for two iterations are shown in Fig-

ure 4. For comparison, a likelihood estimate obtained

by particle filtering (1000 particles and the optimal im-

portance distribution) is also shown. The EM iterations

seem to converge toward the maximum of the likelihood

curve and the second EM bound is rather close to the

particle filter likelihood estimate. The EM lower bounds

are mostly below the sigma-point likelihood curve as

expected, except that the first EM lower bound slightly

exceeds the sigma-point likelihood approximation in the

vicinity of the initial parameter. However, both the eval-

uation of Q and the sigma-point estimate of the likeli-

hood are approximations.

Second, to compare the different sigma-point rules,

we considered estimation of the parameter b with other

Fig. 5. Log-likelihood curves for parameters b and c evaluated by

five different sigma-point methods. The vertical line indicates the

location of the maximum.

parameters fixed and parameter c with other parame-

ters fixed, using a grid of parameter values with close

proximity to the maximum likelihood values. Namely,

for b we used 32 evenly spaced points between 21.7698

and 22.5698 and for c we used 32 points between 7.376

and 8.176. These are shown in Figure 5. The estimate

obtained by the Gauss-Hermite rule and the estimates

obtained by the higher-order UKFs are rather close to

each other while the estimate by the 3rd order UKF is

farther in both parameters.

B. Coordinated-Turn Model

In this section, we compare the performance of the

parameter estimation methods discussed in this article

using a more practical example. The problem is tracking

a target maneuvering according to the coordinated turn

model [2, 4, 33, 38] with bearings-only sensor measure-

ments. The state is 5-dimensional:

x= (x1 x2 _x1 _x2 !)T, (45)

where (x1,x2) is the location of the target in 2-dimen-

sional Cartesian coordinates, ( _x1, _x2) is the correspond-

ing speed, and ! is the turn rate. The dynamic model is

xk+1 =0BBBBBBBBB@

1 0
sin(!k¢t)

!k

cos(!k¢t)¡ 1
!k

0

0 1 ¡cos(!k¢t)¡ 1
!k

sin(!k¢t)

!k
0

0 0 cos(!k¢t) ¡sin(!k¢t) 0

0 0 sin(!k¢t) cos(!k¢t) 0

0 0 0 0 1

1CCCCCCCCCA
xk +qk:

(46)
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The process noise is qk » N(0,Q), where

Q=

0BBBBBB@

qc¢t
3=3 0 qc¢t

2=2 0 0

0 qc¢t
3=3 0 qc¢t

2=2 0

qc¢t
2=2 0 qc¢t 0 0

0 qc¢t
2=2 0 qc¢t 0

0 0 0 0 q!¢t

1CCCCCCA :

(47)

The measurements are angles from the sensors with

additive Gaussian noise:

yk = h(xk) + rk, (48)

where the measurement noise is rk » N(0,R). The co-
variance matrix R is naturally assumed diagonal, as the
measurement errors of separate sensors should be inde-

pendent. For each sensor i at location si the measure-
ment is given by

hi(xk) = atan2(x2,k ¡ s2,i,x1,k ¡ s1,i), (49)

where atan2 is the four-quadrant inverse tangent. We

focus on estimating the measurement noise variances

while keeping other parameters fixed. That is, the sensor

locations and dynamic model covariance are assumed to

be known and the initial state distribution fixed.

The parameters of the process noise covariance were

set to qc = 0:1, q! = 0:1 and the time step to ¢t=

0:01. The ground-truth measurement noise covariance

was R= diag(0:052,0:12). The two sensors were lo-
cated at s1 = (¡1,0:5) and s2 = (1,1). The parameters
of the initial distribution were m0 = (2,0,0,0,0)

T and

P0 = diag(0:5
2 0:52, 0:52, 0:52, 12). We simulated 100

different trajectories with T = 50 timesteps from this

model.

To compare performance of the different sigma-

point schemes, we performed direct maximum likeli-

hood estimation of the sensor noise standard devia-

tion of the first sensor, keeping the noise of the sec-

ond sensor as well as other parameters fixed at their

ground truth values. The sigma-point schemes used

were UKF 3, UKF 5, and UKF 7, as well as GHKF 3,

GHKF 5, and GHKF 7. The 9th order schemes were

omitted since the number of sigma-points is already

quite high as the state is 5-dimensional. In addition

to the sigma-point methods, we also compared against

maximum likelihood estimation based on the extended

Kalman filter (EKF, see, e.g. [17]).

The optimization was performed with gradient-based

optimization using the Matlab optimization toolbox.1

Furthermore, we investigated how the estimation per-

formance varies as a function of uncertainty of the tar-

get’s initial location. This was done by using an addi-

tional parameter for the per-coordinate standard devi-

ation (¾ 2 (0,0:5]). The first two diagonal components

1MATLAB version R2014b, the fminunc function, quasi-Newton al-
gorithm, initialized with

p
R1,1 = 0:1.

Fig. 6. Median absolute error of the parameter estimates compared

to GHKF 7 (median taken over the 100 simulated trajectories) as a

function of the initial location prior standard deviation. UKF 5 is

essentially indistinguishable from GHKF 3.

of P0 were set to ¾
2. Furthermore, the first two com-

ponents of m0 were interpolated between the original

m0 and the simulated x0 to keep the uncertainty of the

initial location consistent with the prior.

Since GHKF 7 is the highest-order sigma-point

scheme amongst those used in this experiment, we as-

sume it is the most accurate and compare against it.

Figure 6 shows comparison of median (over the 100

trajectories) absolute deviation of the MLE estimates

obtained by the various filtering schemes compared to

the ones obtained by GHKF 7. GHKF 5 is closest, while

EKF and UKF 3 are farthest from the baseline. UKF 7,

GHKF 3 and UKF 5 have similar performance. UKF 5

and GHKF 3 are essentially identical. This is explained

by the observation that in 5 dimensions, all UKF 5

sigma-points are present in the GHKF 3 sigma-point

set and the sum of the GHKF 3 weights of these points

is 0.79. The contribution of the remaining sigma-points

that have total 0.21 weight apparently has a negligible

contribution at least with this model. In addition, we also

look at track estimation errors using the final parameter

estimates by each sigma-point scheme. Figure 7 shows

the mean RMSE over the 100 trajectories, that is, for

each simulated trajectory, we computed the smoother

RMSE and then took the average.

To compare the two different gradient evaluation ap-

proaches, sensitivity equations (Section III-A) and the

Fisher identity approach (Section III-C), we evaluated

the derivative of the log-likelihood with respect to the

standard deviation of the error of the first sensor, us-

ing UKF 3 and UKF 5 and both gradient evaluation

approaches. The results are shown in Figure 8.

To measure the performance as a function of compu-

tational cost, we recorded the parameter values as well

as the times used at each iteration of the optimization

routines. In this experiment, the initial location stan-

dard deviation per coordinate was set to 0.5. Median
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Fig. 7. Mean RMSE of smoothed location (mean taken over the

100 trajectories) using the MLE estimated noise variance of the first

sensor. UKF 5 is essentially indistinguishable from GHKF 3.

Fig. 8. Derivative of the log-likelihood with respect to the standard

deviation of the error of the first sensor. Evaluated using UKF 3 and

UKF 5 both with the sensitivity equation approach (Section III-A)

and the Fisher identity based approach (Section III-C).

absolute error (compared to final GHKF 7 estimate, as

a function of time) is shown in Figures 9 and 10. As

one would expect, the higher-order schemes are more

computationally demanding and GHKF is more com-

putationally demanding than UKF, but eventually the

higher-order GHKF schemes find better parameter esti-

mates.

Figure 11 shows the evolution of EM parameter

estimation for one simulated trajectory with ¾ = 0:5.

The EM algorithm practically converges in a couple

of steps with all three sigma-point schemes, and the

final parameter estimates are rather close to each other

and to the direct MLE estimates. Theoretically, the EM

algorithm has linear convergence [9] although it is hard

to say whether these convergence results extend to the

case where the E-step is approximated using sigma-

point smoothers.

Fig. 9. Median absolute error of the parameter as a function of

computation time during the optimization. Median taken over 100

datasets.

Fig. 10. Median absolute error of the parameter as a function of

computation time during the optimization. Median taken over 100

datasets. The solid lines are gradient-based direct optimization,

while the dashed lines show EM (run for 32 iterations) with the

corresponding sigma-point schemes.

V. CONCLUSION AND DISCUSSION

In this paper together with the complementing con-

ference article [24], we have considered various proba-

bilistic point estimation approaches for parameter es-

timation in nonlinear system identification. We dis-

cussed direct likelihood maximization as well as the

expectation-maximization (EM) algorithm coupled with

various filtering and smoothing algorithms, namely,

sigma-point filters, particle filters, and extended Kalman

filters as well as the corresponding smoothers. In this

paper, we focused on the differences between differ-

ent sigma-point filters based on unscented transforms

of third, fifth, seventh and ninth orders, and the Gauss-

Hermite cubature rules.

In diminishing order of computational complexity

and theoretical exactness, the filtering methods would
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Fig. 11. The plot on the left shows the evolution of the parameter

estimate during the first 10 EM steps using UKF 3, UKF 5, and

UKF 7. All methods converge essentially at same speed to the same

value. The plot on the right shows the evolution of the parameter

estimates after the first 10 EM steps as well as the corresponding

direct MLE estimates (the dashed lines).

rank as follows: particle filter, sigma-point filter, ex-

tended Kalman filter based direct likelihood approxi-

mation. In theory, particle filters converge to the exact

filtering solution as the number of particles increases,

while the other methods considered are based on assum-

ing a Gaussian density and using the Kalman filter equa-

tions. However, especially in high-dimensional cases,

the computational cost may prohibit the use of particle

filters. In practice, the assumed density Gaussian filter-

ing approach may have satisfactory performance if the

nonlinearity is not too high. In principle, all sigma-point

filters are based on assuming Gaussian density, and a

higher-order cubature rule should lead to more accurate

approximation of the Gaussian integrals at the cost of

higher computational burden. However, typically in the

literature (e.g. [2]) it has been claimed that when the

Gaussian density approximation is already inaccurate,

more accurate computation of the Gaussian integrals is

not beneficial.

We also tested the methods in two simulated case

studies. In the univariate nonstationary growth model,

maximum likelihood estimates produced by different

sigma-point schemes were similar. However, the esti-

mates obtained by higher-order unscented schemes were

closer to the Gauss-Hermite (order 16) baseline than the

conventional 3rd order unscented transform. This sug-

gests that the higher-order methods may indeed have

some utility.

In the target tracking experiment, we compared the

estimates of the noise standard deviation of one of the

sensors as a function of prior uncertainty of the tar-

get’s location using each of the sigma-point schemes.

With higher prior uncertainty, there were more differ-

ences amongst the methods. This is reasonable because

when there is less uncertainty in the model, all the meth-

ods obtain more accurate parameter estimates. Further-

more, the nonlinearity of the model has a stronger ef-

fect when the state variance is larger. Since no exact

maximum likelihood estimate was available, we com-

pared to the highest-order sigma-point scheme, namely,

GHKF 7. Compared to that, the Gauss-Hermite schemes

were closer than the unscented transform based schemes

and higher-order schemes were closer than lower-order

schemes. Thus, the results are consistent with an as-

sumption that the higher-order sigma-point methods

produce better approximations to the Gaussian filter-

ing result. However, the magnitude of the differences

observed in this experiment is not of practical relevance

and the sample size is small. Thus, the experiment may

be viewed only as suggestive.

We also measured the performance of the discussed

optimization routines as a function of computational

time. In direct gradient-based optimization, higher-

degree algorithms are more time-consuming but even-

tually seem to obtain better parameter estimates. The

EM algorithm with low-degree sigma-point schemes

(UKF 3, UKF 5) was initially faster than the gradient-

based optimization, but eventually the gradient-based

optimization seems to obtain better values. The EM al-

gorithm with UKF 7 sigma-points was more compu-

tationally demanding than the direct optimization with

UKF 7. This is due to the fact that EM requires the

2n-dimensional sigma-points for the smoothing dis-

tribution. This suggests that EM is not applicable in

high-dimensional problems combined with high-degree

sigma-point schemes. However, when interpreting these

findings, it should be noted that we compared to the

GHKF 7 estimate since the true maximum-likelihood

estimate was not available.

The sigma-point integration schemes are derived by

assuming exact integration results for polynomials of

certain degrees. Thus, it should be noted that it is not

guaranteed that a higher-order integration rule produces

a more accurate results, even though it is accurate for

higher-order polynomials. Furthermore, it is not guar-

anteed that a better approximation to the Gaussian filter-

ing result produces a better approximation to the exact

maximum likelihood result. On the other hand, there is

no reason why in general a lower-order approximation

to the Gaussian filtering integrals would produce more

accurate approximations to the exact filtering results.

We also compared the actual tracking performance

in terms of the smoother root mean square errors of

the target locations using the smoother results obtained

with the maximum likelihood parameter estimate of

each sigma-point filter. There was no clear differences

between the different sigma-point schemes in terms of

the tracking error in this experiment. The tracking error

of EKF increased more rapidly as a function of the

initial location uncertainty, which demonstrates the local

linearization nature of EKF.

In five dimensions, the UKF 5 sigma-point scheme

approximates the GHKF 3 scheme in the sense that

all UKF 5 sigma-points are GHKF 3 sigma-points as

well, and more than half of total weight is contributed

by these points. The target-tracking experiment demon-

strated that these two schemes indeed produce almost

equal results. However, most GHKF 3 sigma-points are
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not used in the UKF 5 scheme, and thus evaluating an

integral by UKF 5 requires considerably fewer func-

tion evaluations. These results suggest that there is no

reason to use GHKF 3 in five dimensions as UKF 5 pro-

duces essentially same results with fewer computations.

It is possible that similar computationally lighter close

approximations exist for other Gauss-Hermite based

sigma-point schemes as well.

In the target-tracking experiment, we also investi-

gated how the performance of the EM algorithm varies

with the sigma-point scheme used. As a function of EM

iterations, the evolution of the parameter estimate was

not affected by the choice of sigma-point scheme. How-

ever, the number of sigma-points in the UKF 3 rule

is a small fraction of the number of sigma-points with

the higher-order rules. Thus, measured by model func-

tion evaluations, EM with the UKF 3 rule converged

faster. This suggests that even when the interest lies in

obtaining as accurate parameter estimates as possible,

a reasonable computational approach would be to first

use EM with a low-order sigma-point scheme, such as

UKF 3, to obtain a ballpark estimate. Then, if accuracy

is desired, the initial estimate could be refined using

a more accurate sigma-point scheme combined with a

direct optimization algorithm.

In this paper, we considered only discrete-time state-

space models. Different sigma-point schemes may also

be used for continuous-discrete state-space models (see,

e.g., [8] and references therein). We considered only

fixed deterministic sigma-point schemes. An interesting

future research topic could be to combine the recently

proposed filters based on adapting or randomizing the

sigma-points [10, 39, 40] with parameter estimation.

Finally, we attempt to conclude which of the meth-

ods considered here one should use in practice. Regard-

ing the choice of sigma-point methods the higher-order

unscented transform methods turned out to be quite

good in the examples that we considered–but if the best

possible accuracy is desired, then Gauss-Hermite meth-

ods need to be used. The EM algorithm is indeed useful

in situations when the M-step optimization can be done

in closed form–of which important special cases are

the linear-in-parameters models considered here. How-

ever, for models that are not linear-in-parameters, EM

might not be a good choice. For these models, it is thus

beneficial to directly optimize the log-likelihood, and

in that case we have the choice to evaluate the gradi-

ents either using the sensitivity equations or using the

Fisher’s identity. It turned out that the Fisher’s identity

is often computationally more demanding than the sen-

sitivity equations, due to the requirement of a smoothing

pass, which favors the use of the sensitivity equations

for this purpose. Furthermore, the sensitivity equations

give the exact gradients of the approximate likelihood

whereas the Fisher’s identity only gives approximate

gradients of it. However, the Fisher’s identity has the

advantage of easy black-box implementation which can

sometimes be seen as an advantage.

APPENDIX. M-STEP IN THE LINEAR-IN-PARAMETERS
CASE

By substituting the linear-in-parameters model

(f(x) :=Af̃(x), h(x) :=Hh̃(x)) into the general expres-

sion for Q(μ,μ(n)), we obtain

Q(μ,μ(n))

¼¡1
2
log j2¼P0j ¡

T

2
log j2¼Qj ¡ T

2
log j2¼Rj

¡ 1
2
trfP¡10 [P0jT+(m0jT¡m0)(m0jT¡m0)

T]g

¡ 1
2

TX
k=1

trfQ¡1E[(xk ¡Af̃(xk¡1))

£ (xk ¡Af̃(xk¡1))T j y1:T]g

¡ 1
2

TX
k=1

trfR¡1E[(yk ¡Hh̃(xk))

£ (yk ¡Hh̃(xk))T j y1:T]g: (50)

Since trace is linear, the penultimate term can be writ-

ten as

=¡T
2
trfQ¡1 1

T

TX
k=1

E[(xk ¡Af̃(xk¡1))

£ (xk ¡Af̃(xk¡1))T j y1:T]g

=¡T
2
trfQ¡1 1

T

TX
k=1

E[xkx
T
k ¡ xk f̃(xk¡1)TAT

¡Af̃(xk¡1)xTk +Af̃(xk¡1)f̃(xk¡1)TAT j y1:T]g,
(51)

which due to linearity of expectation equals

=¡T
2
tr
n
Q¡1

h 1
T

TX
k=1

E[xkx
T
k j y1:T]

¡ 1
T

³ TX
k=1

E[xk f̃(xk¡1)
T j y1:T]

´
AT

¡A 1
T

TX
k=1

E[f̃(xk¡1)x
T j y1:T]

+A
1

T

TX
k=1

(E[f̃(xk¡1)f̃(xk¡1)
T j y1:T])AT

io
: (52)

Noting that E[xkxTk j y1:T] =mkjTm
T
kjT+PkjT and substi-

tuting in the notation introduced in Equations (35—40),

we obtain

=¡T
2
trfQ¡1[§¡CAT¡ACT +A©AT]g: (53)
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Similar calculation for the last term in Equation (50),

noting that E[ykyTk j y1:T] = ykyTk , gives

¡T
2
trfR¡1[D¡BHT¡HBT +H£HT]g: (54)

Substituting Equations (53) and (54) into Equation (50),

we get

Q(μ,μ(n)) =

¡ 1
2
log j2¼P0j ¡

T

2
log j2¼Qj ¡ T

2
log j2¼Rj

¡ 1
2
trfP¡10 [P0jT+(m0jT¡m0)(m0jT¡m0)

T]g

¡ T
2
trfQ¡1[§¡CAT¡ACT +A©AT]g

¡ T
2
trfR¡1[D¡BHT¡HBT +H£HT]g:

To maximize this with respect to the parameters

(m0,P0,A,H,Q,R) we differentiate with respect to pa-

rameter in question and set the derivative to 0. For Q:

dQ
dQ

=¡T
2

d

dQ
log j2¼Qj

¡ T
2

d

dQ
trfQ¡1[§¡CAT¡ACT +A©AT]g

=¡T
2
Q¡1

+
T

2
Q¡1[§¡CAT¡ACT +A©AT]Q¡1: (55)

Setting the derivative equal to 0, we obtain the equation

T

2
Q¡1 =

T

2
Q¡1[§¡CAT¡ACT +A©AT]Q¡1: (56)

Multiplying from right by (2=T)Q and from left by Q

gives

Q=§¡CAT¡ACT +A©AT: (57)

The derivations for the optimal solutions of R and P0
are similar. For A:

dQ
dA

=¡T
2

h
¡ d

dA
tr(Q¡1CAT)

¡ d

dA
tr(Q¡1ACT) +

d

dA
tr(A©AT)

i
=¡T

2
Q¡1[2A©¡ 2C] (58)

Since Q¡1 is nonsingular, the derivative is zero only if
the last factor is zero. If © is invertible, this in turn

implies

A=C©¡1: (59)

The derivations for the optimal solutions of H and m0

are similar.

If theparameterμ is any subset offA,H,Q,R,m0,P0g,
it can be optimized by these closed-form expressions.

First, note that (A,Q), (H,R) and (m0,P0) are indepen-

dent in the sense that, for example, the optimal A and

Q do not depend on the other four parameters. Further-

more, the optimal A does not depend on Q. Thus, A and

Q can be jointly optimized by first solving the optimal A

and then substituting that into the expression of optimal

Q. Similar reasoning works for (H,R) and (m0,P0).
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